The Average Connectivity of an Arithmetic Graph

L. Mary Jenitha*

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli. S. Sujitha Department of Mathematics, Holy Cross College (Autonomous), Nagercoil. E-mail: jsujivenkit@gmail.com B. Uma Devi Department of Mathematics, S.T. Hindu College, Nagercoil. E-mail: umasub1968@gmailcom *Corresponding author E-mail: jeni.mathematics@gmail.com

Abstract

The average connectivity $\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{v}{2}}$, $\kappa G(u, v)$ is defined to be the maximum value of k for which u and v are k-connected. In this paper, we consider the concept of the average connectivity of an arithmetic graph. It is shown that $\bar{\kappa}(G) \leq \frac{\left[(v-2)\binom{v-\beta}{2} + (v-\beta)\binom{\beta}{2} + (v-\beta)^2\beta\right]}{\binom{v}{2}}$ where v is the order and β is an independence number of an arithmetic graph. Also, it is clear that, if a_1 is increasing then $\bar{\kappa}(G)$ is decreasing for an arithmetic graph G = Vn, where $n = P_1^{a_1} \times P_2$.

Keywords: Average Connectivity, Arithmetic Graph, Total Connectivity.

AMS subject classification: 05C12

1. Introduction

A graphG is an ordered triple($V(G), E(G), \Psi_G$) consisting of an nonempty set V(G) of vertices, a set E(G) of edges and an incidence function Ψ_G that associates with each edge of G an unordered pair of vertices of G. The number of vertices in G is denoted by v = |V(G)| is called the *order* of G while the number of edges in G is denoted by v = |E(G)| is called the *size* of the graph G. A graph of order v and size is called (v,ε) graph. A graph is *simple* if it has no loops and no two of its links join the same pair of vertices. A simple graph in which each pair of distinct vertices is joined by an edge is called *complete graph*. The *degree* of a vertex v in a graph G is the number of edges of G incident with v and is denoted by deg_Gv or d(v). A vertex of degree one is called a *pendent vertex* or an *end vertex* of G. The maximum and minimum degree of a graph G is denoted by $\Delta(G)$ and $\Box(G)$ respectively.

A vertex v of G is a *cut vertex* if E can be partitioned into E_1 and E_2 such that $G[E_1]$ and $G[E_2]$ have just the vertex v in common. A *bipartite graph* G is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every edge of G joins V_1 with V_2 ; (V1, V2) is a bipartition of G. A graph G is called *acyclic* if it has no cycles. A connected acyclic graph is called a *tree*. A non trivial path is a tree with exactly two end vertices. A family of paths in G is said to be *internally disjoint* if no vertex of G is an internal vertex of more than one path of the family. The *arithmetic graph* $G=V_n$ is introduced by Vasumathi. N and Vangipuram. S in [6] and later it was studied by various authors in [3, 4, 5]. It is defined as, a graph with its vertex set is the set consists of the divisors of n(excluding 1) where n is a positive integer and $n=P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \dots \dots \times P_r^{a_r}$ where P_i 's are distinct primes and a_i 's≥land two distinct vertices a, b which are not of the same parity are adjacent to this graph if $(a, b)=P_i$ for some $i, 1 \le i \le r$. The vertices a and b are said to be of the same parity if both a and b are the powers of the same prime, for instance $a = P^2$, $b=P^5$. Throughout the paper G is a simple connected graph with at least three vertices. The following observations are used in the sequel.

Observation 1.1.[4]Let $G = V_n$ be an arithmetic graph where $n=P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \times \dots \times P_r^{a_r}$ the number of vertices of G is $|V| = [\prod_{i=1}^r (a_i + 1)] - 1$.

Observation 1.2.[3]Let $G=V_n$ be an arithmetic graph where $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \times \dots \times P_r^{a_r}, a_i = 1 \forall i \in \{1, 2, 3, \dots r\}$. Then

- $(1)\Delta(G) = 2^{r-1}$
- (2) \square (*G*) = $\begin{cases} r, r \ge 3 \\ 1, r = 2 \end{cases}$

Observation 1.3.[4]Let $G = V_n$ be an arithmetic graph where $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \times \dots \times P_r^{a_r}$, at least one $a_i > 1$. Then (G) = r and $\Delta(G) = a_j \prod_{i=1}^r (a_i + 1) - 1$, where a_j is the maximum exponent of P_i .

Observation 1.4.[1] $\sum_{v \in V} d(v) = 2\varepsilon$

2. Average Connectivity

The definition of an average connectivity is studied from [2] and is determined the same for arithmetic graphs.

Definition 2.1.[2]

The average connectivity $\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{v}{2}}, \kappa_G(u, v)$ is defined to be the maximum value of k for which u and v are k-connected. If the order of G is v, then the average connectivity $\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{v}{2}}$, the expression $\sum_{u,v} \kappa_G(u,v)$ is sometimes referred to as the total connectivity of G.

Remark 2.2. Maximum number of internally disjoint paths between v_i and v_j are less than or equal to min (*deg* (v_i), *deg* (v_j)).

Theorem 2.3. For an arithmetic graph $G=V_n$

(i)
$$\bar{\kappa}(G) = 1$$
 if $n = P_1 \times P_2$.
(ii) $\bar{\kappa}(G) < 2^{r-1}$ if $n = P_1 \times P_2 \times P_3 \times \dots \times P_r$.
(iii) $\bar{\kappa}(G) < a_j \prod_{\substack{i=1 \ i \neq j}}^r (a_i + 1) - 1$ if $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \times \dots \times P_r^{a_r}$

Proof.

(i)In this case, the given arithmetic graph is a non-trivial tree, and hence the result is obvious.

(ii)Let $G = V_n$ be an arithmetic graph where $n = P_1 \times P_2 \times P_3 \times ... \times P_r$. By observation 1.1, 1.2 and remark 2.1, and also the arithmetic graph is not regular we get the average connectivity $\bar{\kappa}(G) < 2^{r-1}$

(iii)In this case, the given arithmetic graph $G = V_n$ where $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \dots \dots \times P_r^{a_r}$ has maximum degree $a_j \prod_{\substack{i=1 \ i \neq i}}^r (a_i + 1)$ -1. Since the graph is not regular

$$\bar{\kappa}(G) < a_j \prod_{\substack{i=1\\i\neq i}}^r (a_i + 1) - 1$$

Theorem 2.4. Let $G = V_n$ where $n = P_1 \times P_2 \times P_3 \times ... \times P_r$ be an arithmetic graph of order $\nu = 2^r - 1$ and an independence number β , then $\bar{\kappa}(G) \leq \frac{\left[2^{r-1}\binom{\nu-\beta}{2} + (\nu-\beta)\binom{\beta}{2} + (\nu-\beta)^2\beta\right]}{\binom{\nu}{2}}$.

Proof. Consider the arithmetic graph $G = V_n$ where $n=P_1 \times P_2 \times P_3 \times \ldots \times P_r$ of order 2^r -1. Let *S* be the set of independent vertices with $|S|=\beta$.

Since by observation 1.1, 1.2 and remark 2.1, the average connectivity between any two pair of vertices is at most 2^{r-1} . Therefore, the total connectivity of *G* is the sum of the following cases, the vertices which are in *S* and not in *S*

Case (i) If $u, v \notin S$ then the total connectivity $\sum_{u,v \notin S} \kappa_G(u, v)$ is at most $2^{r-1} {\binom{v-\beta}{2}}$.

Case (ii) If *uorv* (or both) is in *S* then the total connectivity is at most $(\nu - \beta)$. Hence for these pairs $\sum_{u,v} \kappa_G(u, v)$ will be at most $(\nu - \beta) [\binom{\beta}{2} + (\nu - \beta)\beta]$

Hence from these two cases we get $\bar{\kappa}(G) \leq \frac{\left[2^{r-1}\binom{\nu-\beta}{2} + (\nu-\beta)\binom{\beta}{2} + (\nu-\beta)^2\beta\right]}{\binom{\nu}{2}}.$

Theorem 2.5. Let $G = V_n$ be an arithmetic graph of order ν and independence number β , where $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \dots \dots \times P_r^{a_r}$ and $n \neq P_1 \times P_2$, then $\bar{\kappa}(G) \leq \frac{\left[(v-2)\binom{v-\beta}{2} + (v-\beta)\binom{\beta}{2} + (v-\beta)^2\beta\right]}{\binom{v}{2}}$.

Proof. Let *G* be an arithmetic graph with *v* vertices and independence number β , and let *S* be a set of independent vertices such that $|S| = \beta$. Since the arithmetic graph is not complete, the connectivity between any pair of vertices in *G* is at most ν -2, so the contribution to the total connectivity of *G* of the pairs of vertices not in *S* is bounded by $(\nu - 2)\binom{\nu - \beta}{2}$.

On the other hand, if *u*orv (or both) is in *S* then $k_G(u,v) \le v -\beta$, so such pairs contribute at most $(v - \beta)\binom{\beta}{2} + (v - \beta)^2\beta$ to the total connectivity. Addition of these two contributions gives the desired result.

Corollary 2.6.Let $G = V_n$ be an arithmetic graph where $n = P_1^{a_1} \times P_2^{a_2} \times P_3^{a_3} \dots \dots \times P_r^{a_r}$

at least one $a_i > 1$ with order $\nu = [\prod_{i=1}^r (a_i + 1)] - 1$ and independence number β then $\bar{\kappa}(G) \leq \frac{\left[a_j \prod_{i=1}^r (a_i+1)-1]\binom{v-\beta}{2} + (v-\beta)\binom{\beta}{2} + (v-\beta)^2\beta\right]}{\binom{p}{2}}$, where a_j is the maximum exponent of P_i .

Proof. The result is obvious from theorem 2.4.

Theorem2.7.For an arithmetic graph $G = V_n$, $n = P_1^{a_1} \times P_2^{a_2}$, $a_1, a_2 \ge 1$ then $\varepsilon = 4a_1a_2 - a_1 - a_2$, where ε is the size of the graph G.

Proof. The vertex set V(G) contains primes, prime powers, and product of powers. The neighbors of P_1 is a set $N(P_1)$, containing vertices, which are the Cartesian product of the sets $\{P_1, P_1^2, P_1^3, ..., P_1^{a_1}\}$ and $\{P_2, P_2^2, P_2^3, ..., P_2^{a_2}\}$. Similarly the vertices of $N(P_2)$.

The vertices $P_1^{a_1}, a_1 > 1$ are adjacent to $P_1 \times P_2, P_1 \times P_2^2, \dots, P_1 \times P_2^{a_2}$. Also the vertices $P_2^{a_2}, a_2 > 1$ are adjacent to $P_1 \times P_2 P_1^2 \times P_2, \dots, P_1^{a_1} \times P_2^{a_1}$.

 P_2 . The vertices $P_1^{a_1} \times P_2 a_1$ 1 areadjacent to $P_1, P_2, P_2^{2^2}, P_2^{3^2}$. Similarly, the vertices of the form $P_1 \times P_2^{a_2}, a_2 \ge 1$ are adjacent to $P_1, P_2, P_1^{2^2}, P_1^{3^2}$. If $a_1 > 1$ and $a_2 > 1$ then $P_1^{a_1} \times P_2^{a_2}$ is adjacent only to P_1 and P_2 . Hence the degrees of the vertices are given by

$$d(v) = \begin{cases} a_{1}a_{2} & \text{if} \quad v = P_{1}orP_{2} \\ a_{2} & \text{if} \quad v = P_{1}^{m}, 1 < m \le a_{1} \\ a_{1} & \text{if} \quad v = P_{2}^{n}, 1 < n \le a_{2} \\ a_{1} + a_{2} & \text{if} \quad v = P_{1}^{m} \times P_{2}^{n}; \ m, n = 1 \\ a_{2} + 1 & \text{if} \quad v = P_{1}^{m} \times P_{2}^{n}; \ n = 1, 1 < m \le a_{1} \\ a_{1} + 1 & \text{if} \quad v = P_{1}^{m} \times P_{2}^{n}; \ m = 1, 1 < n \le a_{2} \\ 2 & \text{if} \quad v = P_{1}^{m} \times P_{2}^{n}, 1 < m \le a_{1}, 1 < n \le a_{2} \\ 2 & \text{if} \quad v = P_{1}^{m} \times P_{2}^{n}, 1 < m \le a_{1}, 1 < n \le a_{2} \end{cases}$$

$$\sum d(v) = 2 a_{1}a_{2} + (a_{1} - 1)a_{2} + (a_{2} - 1)a_{1} + a_{1} + a_{2} + (a_{1} - 1)(a_{2} + 1) + (a_{2} - 1)(a_{1} + 1) \\ + (a_{1} - 1)(a_{2} - 1)2.$$
Therefore by Observation 1.4, we have

Therefore by Observation 1.4, we have

$$\varepsilon = \frac{\sum d(v)}{2}$$

 $\varepsilon = 4a_1a_2 - a_1 - a_2$ **Theorem2.8.**For an arithmetic graph $G = V_n$, $n = P_1^{a_1} \times P_2$, $a_1 > 1$ then $\bar{\kappa}(G) \in [1,2)$, Further if a_1 is increasing then $\bar{\kappa}(G)$ is decreasing.

Proof. Let $G = V_n$ be an arithmetic graph where $n = P_1^{a_1} \times P_2$, by observation 1.1 and theorem 2.7, we get the number of pendent vertices are $a_1 - 1$. The contribution to the total connectivity will be reduced if the pendent vertices are increased. Hence $\bar{\kappa}(G)$ is decreasing if a_1 is increasing.

Theorem2.9. For an arithmetic graph $G = V_n, n = P_1^{a_1} \times P_2^{a_2}, a_1, a_2 \ge 1$ then G is a bipartite graph.

Proof. Let $G=V_n$ be an arithmetic graph, such that $V(G)=X_1UX_2$, where $X_1=\{p_i,p_i^n,1\leq n\leq a_i; i=1,2,...,k\}, X_2=\{p_i^m \times p_j^n; l\leq m, n\leq a_i, i=1,2,...,k\}$. By the definition of an arithmetic graph no two vertices of the set X_1 are adjacent as well as no two vertices of the set X_2 are also adjacent and every edge joins a vertex of X_1 to a vertex of X_2 . This shows that the graph G is a bipartite graph.

3. Conclusion

We conclude by noting that the average connectivity of an arithmetic graph is strictly less than the maximum degree of G. Also, for an arithmetic graph $G = V_n$, $n=P_1^{a_1} \times P_2$, $a_1 > 1$, if a_1 is increasing then $\bar{\kappa}(G)$ is decreasing and for $G = V_n$, $n=P_1^{a_1} \times P_2^{a_2}$, $a_1, a_2 \ge 1, G$ is a bipartite graph. The readers can classify the different arithmetic graphs as in terms of multipartite graphs.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph theory with applications, London: Macmillan, 1976.
- [2] W. Lowell Beineke, R. Ortrud Oellermann, E. Raymond Pippert, The average connectivity of a graph, Discrete Mathematics, 252, 2002, 31-45.
- [3] L. Mary Jenitha, S. Sujitha, The Connectivity Number of an Arithmetic Graph, International journal of Mathematical Combinatorics Special, 1, 2018, 132-136.
- [4] R. Rangarajan, A. Alqesmath, A. Alwardi, On V_n- Arithmetic graph ,International Journal of Computer Applications(0975-8887), 125 (9), 2015, 1-7.
- [5] K.V. Suryanarayana Rao, V. Sreenivasan, The Split Domination in Arithmetic Graphs, International Journal of Computer Applications (0975-8887), 29 (3), 2011, 46-49.
- [6] N.Vasumathi, S. Vangipuram, Existence of a graph with a given domination Parameter, Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications; University of Madras, Madras, 1995, 187-195.