The Average Connectivity of an Arithmetic Graph

L. Mary Jenitha*
Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli.
S. Sujitha
Department of Mathematics, Holy Cross College (Autonomous), Nagercoil.
E-mail: jsujivenkit@gmail.com
B. Uma Devi
Department of Mathematics, S.T. Hindu College, Nagercoil.
E-mail: umasub1968@gmailcom
*Corresponding author E-mail: jeni.mathematics@gmail.com

Abstract

The average connectivity $\bar{\kappa}(G)=\frac{\sum_{u, v} \mathrm{k}_{\mathrm{G}}(\mathrm{u}, \mathrm{v})}{\binom{v}{2}}, \mathrm{KG}(\mathrm{u}, \mathrm{v})$ is defined to be the maximum value of k for which u and v are k -connected. In this paper, we consider the concept of the average connectivity of an arithmetic graph. It is shown that $\bar{\kappa}(G) \leq \frac{\left[(v-2)\binom{0-\beta}{2}+(v-\beta)\binom{\beta}{2}+(v-\beta)^{2} \beta\right]}{\binom{0}{2}}$ where v is the order and β is an independence number of an arithmetic graph. Also, it is clear that, if a_{1} is increasing then $\bar{\kappa}(G)$ is decreasing for an arithmetic graph $G=V n$, where $n=P_{1}{ }^{a_{1}} \times P_{2}$.

Keywords: Average Connectivity, Arithmetic Graph, Total Connectivity.
AMS subject classification: 05C12

1. Introduction

A graph G is an ordered $\operatorname{triple}\left(V(G), E(G), \Psi_{G}\right)$ consisting of an nonempty set $V(G)$ of vertices, a set $E(G)$ of edges and an incidence function Ψ_{G}, that associates with each edge of G an unordered pair of vertices of G. The number of vertices in G is denoted by $v=|V(G)|$ is called the order of G while the number of edges in G is denoted by $\varepsilon=|E(G)|$ is called the size of the graph G. A graph of order v and size is called (v, ε) graph. A graph is simple if it has no loops and no two of its links join the same pair of vertices. A simple graph in which each pair of distinct vertices is joined by an edge is called complete graph. The degree of a vertex v in a graph G is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G} v$ or $d(v)$.A vertex of degree one is called a pendent vertex or an end vertex of G. The maximum and minimum degree of a graph G is denoted by $\Delta(G)$ and $\square(G)$ respectively.

A vertex v of G is a cut vertex if E can be partitioned into E_{1} and E_{2} such that $G\left[E_{1}\right]$ and $G\left[E_{2}\right]$ have just the vertex v in common. A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins V_{1} with $V_{2} ;(V 1, V 2)$ is a bipartition of G. A graph G is called acyclic if it has no cycles. A connected acyclic graph is called a tree. A non trivial path is a tree with exactly two end vertices. A family of paths in G is said to be internally disjoint if no vertex of G is
an internal vertex of more than one path of the family. The arithmetic graph $G=V_{n}$ is introduced by Vasumathi. N and Vangipuram. S in [6] and later it was studied by various authors in [3, 4, 5]. It is defined as, a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \ldots \ldots \ldots P_{r}{ }^{a_{r}}$ where P_{i} 's are distinct primes and a_{i} 's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent to this graph if $(a, b)=P_{\mathrm{i}}$ for some $i, 1 \leq i \leq r$. The vertices a and b are said to be of the same parity if both a and b are the powers of the same prime, for instance $a=P^{2}, b=P^{5}$. Throughout the paper G is a simple connected graph with at least three vertices. The following observations are used in the sequel.

Observation 1.1.[4]Let $G=V_{n}$ be an arithmetic graph where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a} \times \ldots \ldots \ldots$ $P_{r}{ }^{a_{r}}$ the number of vertices of G is $|V|=\left[\prod_{i=1}^{r}\left(a_{i}+1\right)\right]-1$.

Observation 1.2.[3]Let $G=V_{n}$ be an arithmetic graph where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \times \ldots \ldots \ldots \times$ $P_{r}{ }^{a_{r}}, a_{i}=1 \forall \mathrm{i} \in\{1,2,3, \ldots r\}$.Then
(1) $\Delta(G)=2^{r-1}$
(2) $\square(G)= \begin{cases}r, & r \geq 3 \\ 1, & r=2\end{cases}$

Observation 1.3.[4]Let $G=V_{\mathrm{n}}$ be an arithmetic graph where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \times \ldots \ldots \ldots \times P_{r}{ }^{a_{r}}$, at least one $a_{i}>1$.Then $(G)=r$ and $\Delta(\mathrm{G})=a_{j} \prod_{\substack{i=1 \\ i \neq j}}^{r}\left(a_{i}+1\right)-1$, where a_{j} is the maximum exponent of P_{i}, i $\in\{1,2,3 \ldots r\}$

Observation 1.4.[1] $\sum_{v \in V} d(v)=2 \varepsilon$

2. Average Connectivity

The definition of an average connectivity is studied from [2] and is determined the same for arithmetic graphs.
Definition 2.1.[2]
The average connectivity $\bar{\kappa}(G)=\frac{\sum_{u, v} \kappa_{G}(u, v)}{\binom{v}{2}}, \kappa_{G}(u, v)$ is defined to be the maximum value of k for which u and v are k-connected. If the order of G is v, then the average connectivity $\bar{\kappa}(G)=\frac{\sum_{u, v} \kappa_{G}(u, v)}{\binom{v}{2}}$, the expression $\sum_{u, v} \kappa_{G}(u, v)$ is sometimes referred to as the total connectivity of G.

Remark 2.2. Maximum number of internally disjoint paths between v_{i} and v_{j} are less than or equal to $\min \left(\operatorname{deg}\left(v_{\mathrm{i}}\right), \operatorname{deg}\left(v_{\mathrm{j}}\right)\right)$.

Theorem 2.3. For an arithmetic graph $G=V_{n}$
(i) $\bar{\kappa}(G)=1$ if $n=P_{1} \times P_{2}$.
(ii) $\bar{\kappa}(G)<2^{\mathrm{r}-1}$ if $n=P_{1} \times P_{2} \times P_{3} \times \ldots \times P_{r}$.
(iii) $\bar{\kappa}(G)<a_{j} \prod_{\substack{i=1 \\ i \neq j}}^{r}\left(a_{i}+1\right)-1$ if $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \times \ldots \ldots \ldots \times P_{r}^{a_{r}}$.

Proof.

(i)In this case, the given arithmetic graph is a non-trivial tree, and hence the result is obvious.
(ii)Let $G=V_{\mathrm{n}}$ be an arithmetic graph where $n=P_{1} \times P_{2} \times P_{3} \times \ldots \times P_{r}$. By observation1.1, 1.2 and remark 2.1, and also the arithmetic graph is not regular we get the average connectivity $\bar{\kappa}(G)<2^{r-1}$
(iii)In this case, the given arithmetic graph $G=V_{\mathrm{n}}$ where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \ldots \ldots \ldots \times P_{r}{ }^{a_{r}}$ has maximum degree $a_{j} \prod_{\substack{i=1 \\ i \neq j}}^{r}\left(a_{i}+1\right)$-1. Since the graph is not regular

$$
\bar{\kappa}(G)<a_{j} \prod_{\substack{i=1 \\ i \neq j}}^{r}\left(a_{i}+1\right)-1
$$

Theorem 2.4. Let $G=V_{n}$ where $n=P_{1} \times P_{2} \times P_{3} \times \ldots \times P_{r}$ be an arithmetic graph of order $v=2^{r}-1$ and an independence number β, then $\bar{\kappa}(G) \leq \frac{\left[2^{r-1}\binom{v-\beta}{2}+(v-\beta)\binom{\beta}{2}+(v-\beta)^{2} \beta\right]}{\binom{v}{2}}$.

Proof. Consider the arithmetic graph $G=V_{n}$ where $n=P_{1} \times P_{2} \times P_{3} \times \ldots \times P_{r}$ of order $2^{r}-1$. Let S be the set of independent vertices with $|S|=\beta$.

Since by observation1.1,1.2 and remark 2.1, the average connectivity between any two pair of verticesis at most 2^{r-1}. Therefore, the total connectivity of G is the sum of the following cases, the vertices which are in S and not in S

Case (i) If $u, v \notin S$ then the total connectivity $\sum_{u, v \notin S} \kappa_{G}(u, v)$ is at most $2^{\mathrm{r}-1}\binom{v-\beta}{2}$
Case (ii) If uorv (or both) is in S then the total connectivity is at $\operatorname{most}(v-\beta)$.Hence for these pairs $\sum_{u, v} \kappa_{G}(u, v)$ will be at most $\left.(v-\beta)\left[\begin{array}{c}\beta \\ 2\end{array}\right)+(v-\beta) \beta\right]$

Theorem 2.5. Let $G=V_{n}$ be an arithmetic graph of order v and independence number β, where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \ldots \ldots \ldots \times P_{r}{ }^{a_{r}}$ and $n \neq P_{1} \times P_{2}$, then $\bar{\kappa}(G) \leq \frac{\left[(v-2)\binom{v-\beta}{2}+(v-\beta)\binom{\beta}{2}+(v-\beta)^{2} \beta\right]}{\binom{v}{2}}$.

Proof. Let G be an arithmetic graph withvvertices and independence number β, and let S be a set of independent vertices such that $|S|=\beta$. Since the arithmetic graph is not complete, the connectivity between any pair of vertices in G is at mostv-2, so the contribution to the total connectivity of G of the pairs of vertices not in S is bounded by $(v-2)\binom{v-\beta}{2}$.

On the other hand, if uorv (or both) is in S then $\mathrm{k}_{G}(u, v) \leq v-\beta$, so such pairs contribute at $\operatorname{most}(v-$ $\beta)\binom{\beta}{2}+(v-\beta)^{2} \beta$ to the total connectivity. Addition of these two contributions gives the desired result.

Corollary 2.6.Let $G=V_{\mathrm{n}}$ be an arithmetic graph where $n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}} \times P_{3}{ }^{a_{3}} \ldots \ldots \ldots \times P_{r}{ }^{a_{r}}$
at least one $a_{i}>1$ with order $v=\left[\prod_{i=1}^{r}\left(a_{i}+1\right)\right]-1$ and independence number β then $\bar{\kappa}(G) \leq$ $\frac{\left[\begin{array}{c}\left.\left[a_{j} \prod_{i=1}^{r}\left(a_{i}+1\right)-1\right]\binom{v-\beta}{i \neq j}+(v-\beta)\binom{\beta}{2}+(v-\beta)^{2} \beta\right]\end{array}\right.}{\binom{v}{2}}$, where a_{j} is the maximum exponent of P_{i}.

Proof. The result is obvious from theorem 2.4.
Theorem2.7.For an arithmetic graph $G=V_{n}, n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}}, a_{1}, a_{2} \geq 1$ then $\varepsilon=4 a_{1} a_{2}-a_{1}-a_{2}$, where ε is the size of the graph G.

Proof. The vertex set $V(G)$ contains primes, prime powers, and product of powers. The neighbors of P_{1} is a set $N\left(P_{1}\right)$,containing vertices, which are the Cartesian product of the sets $\left\{P_{1}, P_{1}{ }^{2}, P_{1}{ }^{3} \ldots, P_{1}{ }^{a_{1}}\right\}$ and $\left\{P_{2}, P_{2}{ }^{2}, P_{2}{ }^{3} \ldots, P_{2}{ }^{a^{2}}\right\}$. Similarly the vertices of $\mathrm{N}\left(P_{2}\right)$.

The vertices $P_{1}{ }^{a_{1}}, a_{1}>1$ are adjacent to $P_{1} \times P_{2}, P_{1} \times P_{2}{ }^{2}, \ldots \ldots \ldots, P_{1} \times P_{2}{ }^{a_{2}}$. Also the vertices $P_{2}{ }^{a_{2}}, a_{2}>1$ are adjacent to $P_{1} \times P_{2}, P_{1}{ }^{2} \times P_{2}, \ldots \ldots P_{1}{ }^{a_{1}} \times$
P_{2}.Thevertices $P_{1}{ }^{a_{1}} \times P_{2}, a_{1}$ 1areadjacentto $P_{1,}, P_{2}, P_{2}{ }^{2}, P_{2}{ }^{3} \ldots, P_{2}{ }^{a_{2}}$. Similarly, the vertices of the form P ${ }_{1} \times P_{2}{ }^{a_{2}}, a_{2} \geq 1$ are adjacent to $P_{1,}, P_{2}, P_{1}{ }^{2}, P_{1}{ }^{3} \ldots, P_{1}{ }^{a_{1}}$. If $a_{1}>1$ and $a_{2}>1$ then $P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}}$ is adjacent only to P_{1} and P_{2}. Hence the degrees of the vertices are given by

$$
\begin{aligned}
& d(v)=\left\{\begin{array}{ccl}
a_{1} a_{2} & \text { if } & v=P_{1} \text { or } P_{2} \\
a_{2} & \text { if } & v=P_{1}{ }^{m}, 1<m \leq a_{1} \\
a_{1} & \text { if } & v=P_{2}{ }^{n}, 1<n \leq a_{2} \\
a_{1}+a_{2} & \text { if } & v=P_{1}{ }^{m} \times P_{2}{ }^{n} ; m, n=1 \\
a_{2}+1 & \text { if } & v=P_{1}{ }^{m} \times P_{2}{ }^{n} ; n=1,1<m \leq a_{1} \\
a_{1}+1 & \text { if } & v=P_{1}{ }^{m} \times P_{2}{ }^{n} ; m=1,1<n \leq a_{2} \\
2 & \text { if } & v=P_{1}{ }^{m} \times P_{2}{ }^{n}, 1<m \leq a_{1}, 1<n \leq a_{2}
\end{array}\right. \\
& \sum d(v)=2 a_{1} a_{2}+\left(a_{1}-1\right) a_{2}+\left(a_{2}-1\right) a_{1}+a_{1}+a_{2}+\left(a_{1}-1\right)\left(a_{2}+1\right)+\left(a_{2}-1\right)\left(a_{1}+1\right) \\
& +\left(a_{1}-1\right)\left(a_{2}-1\right) 2 .
\end{aligned}
$$

Therefore by Observation 1.4, we have

$$
\begin{gathered}
\boldsymbol{\varepsilon}=\frac{\sum \boldsymbol{d}(\boldsymbol{v})}{\mathbf{2}} \\
\boldsymbol{\varepsilon}=4 a_{1} a_{2}-a_{1}-a_{2}
\end{gathered}
$$

Theorem2.8. For an arithmetic graph $G=V_{n}, n=P_{1}{ }^{a_{1}} \times P_{2}, a_{1}>1$ then $\bar{\kappa}(G) \epsilon[1,2)$,Further if a_{1} is increasing then $\bar{\kappa}(G)$ is decreasing.

Proof. Let $G=V_{n}$ be an arithmetic graph where $n=P_{1}{ }^{a_{1}} \times P_{2}$, byobservaion1.1andtheorem2.7, weget the number of pendent vertices are $a_{1}-1$. The contribution to the total connectivity will be reduced if the pendent vertices are increased. Hence $\bar{\kappa}(G)$ is decreasing if a_{1} is increasing.

Theorem2.9. For an arithmetic graph $G=V_{n}, n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a_{2}}, a_{1}, a_{2} \geq 1$ then G is a bipartite graph.
Proof. Let $G=V_{n}$ be an arithmetic graph, such that $V(G)=X_{1} U X_{2}$, where $X_{1}=\left\{p_{i}, p_{i}, 1 \leq n \leq a_{i} ; i=\right.$ $1,2, \ldots . k\}, X_{2}=\left\{p_{i}{ }^{m} \times p_{j}{ }^{n} ; 1 \leq m, n \leq a_{i}, i=1,2, \ldots . k\right\}$.By the definition of an arithmetic graph no two vertices of the set X_{1} are adjacent as well as no two vertices of the set X_{2} are also adjacent and every edge joins a vertex of X_{1} to a vertex of X_{2}. This shows that the graph G is a bipartite graph.

3. Conclusion

We conclude by noting that the average connectivity of an arithmetic graph is strictly less than the maximum degree of G. Also, for an arithmetic graph $G=V_{n}, n=P_{1}{ }^{a_{1}} \times P_{2}, a_{1}>1$, if a_{1} is increasing then $\bar{\kappa}(G)$ is decreasing and for $G=V_{n}, n=P_{1}{ }^{a_{1}} \times P_{2}{ }^{a}, a_{1}, a_{2} \geq 1, G$ is a bipartite graph. The readers can classify the different arithmetic graphs as in terms of multipartite graphs.

References

[1] J.A. Bondy, U.S.R. Murty, Graph theory with applications, London: Macmillan, 1976.
[2] W. Lowell Beineke, R. Ortrud Oellermann, E. Raymond Pippert, The average connectivity of a graph, Discrete Mathematics, 252, 2002, 31-45.
[3] L. Mary Jenitha, S. Sujitha, The Connectivity Number of an Arithmetic Graph, International journal of Mathematical Combinatorics Special, 1, 2018, 132-136.
[4] R. Rangarajan, A. Alqesmath, A. Alwardi, On V_{n} - Arithmetic graph ,International Journal of Computer Applications(0975-8887), 125 (9), 2015, 1-7.
[5] K.V. Suryanarayana Rao, V. Sreenivasan, The Split Domination in Arithmetic Graphs, International Journal of Computer Applications (0975-8887), 29 (3), 2011, 46-49.
[6] N .Vasumathi, S. Vangipuram, Existence of a graph with a given domination Parameter, Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications; University of Madras, Madras, 1995, 187-195.

